Evaluation and Management of Acute Cervical Spine Trauma

Laura Pimentel, MDa,b,*, Laura Diegelmann, MDa,c

The evaluation and management of cervical spine injuries is a core component of the practice of emergency medicine. The incidence of serious cervical spine injuries is low but associated rates of death and disability are high; therefore, the emergency physician must have a strong knowledge base to identify these injuries as well as clinical skills that will protect the patient’s spine during assessment. Cervical spine injury causes an estimated 6000 deaths and 5000 new cases of quadriplegia in the United States each year.1 Males are affected 4 times as frequently as females.

Two to three percent of blunt trauma patients who undergo cervical spine imaging are diagnosed with a fracture. The second vertebra is most commonly injured, accounting for 24% of fractures; the sixth and seventh vertebrae together account for another 39% of fractures.2 From a clinical perspective, it is crucial for the emergency physician to diagnose a fracture. In the NEXUS trial, 56.7% of cervical spine fractures were unstable and another 13.9% were otherwise classified as clinically significant.2 Older age is an important risk factor for cervical spine injury: patients 65 years or older have a relative risk twice that of younger trauma victims.3 The associated mortality rate in this age group is 24%.4

A disproportionate number of cervical spine injuries are associated with moderate and severe head injuries sustained in motor vehicle crashes. Head-injured patients are almost 4 times as likely to have a cervical spine injury as those without head injuries. Those at highest risk have an initial Glasgow Coma Scale (GCS) score of 8 or lower and are likely to sustain unstable injuries in the high cervical spine.5

a Department of Emergency Medicine, University of Maryland School of Medicine, 110 South Paca Street, 6th Floor, Suite 200, Baltimore, MD 21201, USA
b Department of Emergency Medicine, Maryland Emergency Medicine Network, 110 South Paca Street, Baltimore, MD 21201, USA
c Department of Emergency Medicine, University of Maryland Medical Center, 110 South Paca Street, Baltimore, MD 21201, USA
* Corresponding author. Department of Emergency Medicine, University of Maryland School of Medicine, 110 South Paca Street, 6th Floor, Suite 200, Baltimore, MD 21201.
E-mail address: lpimentel@memn.org

KEYWORDS
• Cervical spine • Trauma • Fracture • Injury • Vertebrae

doi:10.1016/j.emc.2010.07.003
0733-8627/10/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
The focus of this article is the evaluation and management of blunt cervical spine trauma by the emergency physician. The authors begin by reviewing the pertinent anatomy of the cervical spine. Specific cervical spine fractures are discussed, with an emphasis on unstable injuries and associated spinal cord pathology. The association of vertebral artery injury with cervical spine fracture is addressed, followed by a review of the most recent literature on prehospital care. The authors then review initial considerations in the emergency department, including cervical spine stabilization and airway management. The most current recommendations for cervical spine imaging with regard to indications and modalities are covered. Finally, the emergency department management and disposition of patients with spinal cord injuries are reviewed.

ANATOMY

The cervical spine consists of 7 cervical vertebrae, the spinal cord, intervertebral discs beginning at the C2-C3 interspace, a complex network of supporting ligaments, and neurovascular structures. General vertebral anatomy consists of an annular body and the vertebral arch, including the symmetric pedicles, laminae, superior and inferior articular surfaces, transverse processes, and a single posterior spinous process (Fig. 1A). The cervical vertebrae are smaller than their thoracic or lumbar counterparts, and each transverse process contains a foramen (foramen transversarium) (Fig. 1B). The first 2 and the seventh bones have exceptional anatomic features.

Fig. 1. (A) Cervical spine anatomy. (From EuroSpine, Patient Line, www.eurospine.org; with permission.) (B) Cervical vertebra. (From Agur AMR, Lee MJ, Anderson JE. Distinguishing features and movements. In: Grant's atlas of anatomy. 9th edition. Philadelphia: Lippincott Williams & Wilkins; 1991. p. 206; with permission.)
The first cervical vertebra is called the atlas because it supports the head. Distinct from all other vertebrae, the atlas has no body and no spinous process (Fig. 2); it is a ring-like structure with anterior and posterior arches separated by lateral masses on each side. The superior surfaces of the lateral masses articulate with the occipital condyles of the skull, forming the atlanto-occipital joint. Functionally, this joint allows 50% of neck flexion and extension.

The second cervical vertebra, the axis, forms the surface on which the atlas pivots to allow lateral rotation of the head. The dens, also called the odontoid process, is the cranial extension of the body of the axis into the ring of the atlas; it is the most characteristic feature of C2 (see Fig. 2). The dens articulates with the posterior aspect of
the anterior ring of C1 and is stabilized by the transverse ligament. This articulation provides stability as the atlas pivots during rotation. Half of neck rotation occurs at this atlantoaxial joint. There is no intervertebral disc at either the atlanto-occipital or the C1-C2 joints, predisposing them to inflammatory arthritis. The distinctive feature of the seventh vertebra is its prominent spinous process. Its length extends beyond the other cervical vertebrae, rendering it palpable on physical examination. The seventh vertebra is the highest spinous process that is reliably identifiable, making it a useful landmark. The length and prominence of the spinous process predispose this vertebra to fracture.

Intervertebral discs are interposed between the vertebral bodies from C2 down to the sacrum; they account for about 25% of the height of the spinal column. Structurally, discs are composed of a soft gelatinous center, the nucleus pulposus, surrounded by a cartilaginous ring of tissue (the annulus fibrosus). Functionally, discs provide support, elasticity, and cushioning to the spine. Intervertebral discs deteriorate with age; much of the gelatinous center is replaced with fibrous tissue, resulting in decreased elasticity and mobility.

The cervical spine is connected and supported by a complex network of ligaments (Fig. 3). Three of the most important are the anterior longitudinal ligament and the posterior longitudinal ligament, which extend from the occiput to the sacrum, and the ligamentum flavum. The anterior longitudinal ligament, connecting the anterior aspects of the vertebral bodies, becomes taut and resists hyperextension. The posterior, connecting the posterior aspect of the vertebral bodies, tightens and limits hyperflexion. The posterior longitudinal ligament forms the anterior surface of the spinal canal. The ligamentum flavum connects the laminae of adjacent vertebrae and forms the posterior surface of the spinal canal. This ligament is susceptible to thickening with age and may cause spinal stenosis, resulting in cord and nerve root compression. The interspinous ligaments are thin and membranous, and span the length of the spinous processes.

The blood supply to the spinal column and cord is complex. The main spinal arteries consist of a single anterior and 2 posterior vessels originating from the vertebral arteries; they run longitudinally from the medulla along the length of the cord. These arteries supply only the superior portion of the cord and are supplemented by segmental medullary arteries originating from the vertebral arteries in the cervical spine; they enter the spinal column through the intervertebral foramen. A lone vessel,
the anterior cervical artery, is particularly vulnerable to damage associated with hyper-extension injuries. The result is ischemia to the anterior two-thirds of the cord, a devastating complication.8

When considering cervical spine anatomy in the clinical context, emergency physicians should think of the spinal column as 2 parallel entities. The vertebral bodies and associated intervertebral discs form the anterior column, which is stabilized by the anterior and posterior longitudinal ligaments. The posterior column containing the spinal cord and canal consists of the structures posterior to the anterior column: pedicles, transverse processes, superior and inferior articulating facets, laminae, and spinous process. The ligamentum flavum and the interspinous and associated ligaments stabilize the posterior column. When only one column is injured, the other provides stability, substantially lowering the risk of spinal cord injury compared with when both are compromised.9

The widest portion of the spinal canal is from C1 to C3, where the mid-sagittal diameter ranges from 16 to 30 mm. This diameter narrows from C4 to C7 to a range of from 14 to 23 mm. At this level, the spinal cord normally occupies 40% of the diameter of the canal in a healthy adult. Hyperextension decreases the canal diameter approximately 2 to 3 mm, which becomes clinically important in the context of hyperextension injury.8

The cervical spine is vulnerable to trauma; injury occurs when forces applied to the head or neck overwhelms the anatomic stabilizers of the bony and ligamentous support structures. Degenerative changes resulting in spinal stenosis increase vulnerability to cord damage, particularly with hyperextension mechanisms. Fatal injuries are most common at the craniocervical junction or atlantoaxial level.

PATHOPHYSIOLOGY

Cervical spine injuries can be considered by degree of mechanical instability. White and colleagues10 defined the concept physiologically and radiographically. These investigators defined “stability” as limitation of displacement of the spine under applied physiologic loads, which prevents spinal cord or nerve root damage. In the adult spine, instability may be diagnosed radiographically when there is more than 3.5 mm of displacement in the sagittal plane relative to an adjacent vertebra on resting radiographs or with flexion/extension views. This work led to a complex scoring system that may be applied to injuries that are not clearly stable or unstable.

When evaluating patients in the emergency department, it is not always clear which fractures are stable. Some of the difficulty is the lack of a consistent convention for classifying cervical spine injuries. Some injuries are named, for example, the Jefferson, hangman, and clay shoveler fractures. Others are described by mechanism of injury, pathologic lesion, or combinations of the two. Another source of confusion is lack of agreement among investigators about which injuries are stable. The reality is that each cervical spine injury is unique and its relative stability depends on individual factors such as the patient’s age, associated injuries, and underlying health. It is useful to consider White’s strategy of combining radiologic findings with response to physiologic stress when unsure. All but the most minor cervical spine fractures in the emergency department should be treated as unstable injuries until proven otherwise.

Axial Compression Injury

The Jefferson fracture is an unstable burst fracture of the atlas caused by severe axial compression (Fig. 4). Diving is a common mechanism. The injury is characterized by unilateral or bilateral fractures of the anterior and posterior arches of C1. As an isolated injury, the Jefferson fracture is not usually associated with neurologic injury because of
the width of the spinal canal at that level. However, when it is associated with rupture of the transverse ligament that stabilizes the odontoid to the anterior arch of C1, the Jefferson fracture is very unstable. Associated injuries may include damage to the vertebral artery traversing the foramen transversarium and a second fracture at a lower level. A Jefferson fracture may be diagnosed on an open-mouthed odontoid view by noting displacement of the lateral masses of C1 relative to C2. Overhang of C1 of 6.9 mm over the lateral mass of C2 is diagnostic of a fracture. If this finding is not present but clinical suspicion remains, a computed tomography (CT) scan should be obtained.

Multiple or Complex Mechanism

Odontoid fractures may be 1 of 3 types. The mechanisms are mixed and often unclear. Flexion, extension, and rotation may contribute to the fractures. When evaluating odontoid trauma, emergency physicians should consider that the dens occupies one-third of the spinal canal, the spinal cord occupies another third, and the remaining third is empty space.

A Type I fracture is an avulsion of the tip of the dens above the transverse ligament, thought to be an avulsion fracture from the alar ligaments. In isolation, this injury is usually not associated with instability or spinal cord injury; however, Type I odontoid fractures may be seen in association with atlanto-occipital dislocation. This extremely dangerous injury must be ruled out before conservative treatment is initiated.
A Type II odontoid fracture, the most common of the 3, is localized to the base of the dens (Fig. 5). Ten percent of these fractures are associated with damage to the transverse ligament. This complication represents a very unstable injury associated with high mortality. Because of limited blood supply to the fractured dens, nonunion is high. Patients may be treated with halo immobilization or open surgery. Risk factors for nonunion are age older than 50 years and displacement of the fracture. Hadley and colleagues reported that displacement of 6 mm or more correlated with a 67% rate of nonunion compared with 26% when displacement was less than 6 mm.

A Type III fracture extends into the body of C2 (Fig. 6). It is a mechanically unstable injury because it allows the atlas and occiput to move as a unit. Nonunion is uncommon. Most patients are successfully managed with halo immobilization.

Flexion Mechanism

Among flexion injuries of the cervical spine, the 2 most unstable are the flexion teardrop fracture and the bilateral facet dislocation. The flexion teardrop (Fig. 7) is a devastating injury in which substantial force is required to fracture the anterior inferior aspect of the vertebral body. Common mechanisms are motor vehicle crashes and diving. For the teardrop fracture to occur, there must be disruption of the ligaments of the posterior column, displacing the vertebral body posteriorly into the spinal canal. Neurologic injury is very common. The result is often the anterior cord syndrome, manifesting as quadriplegia and loss of pain and temperature sensation. The most common level for a teardrop fracture is C5.

Bilateral facet dislocation is the most severe form of anterior subluxation (Fig. 8). At the subluxed level, the inferior facets dislocate superiorly and anteriorly to the superior articulating facets of the lower vertebra, causing complete anterior and posterior longitudinal ligamentous disruption. Subluxation of more than 50% will be seen on a lateral radiograph. Neurologic injury is common.
Fig. 6. Type III odontoid fracture. (Courtesy of William Herring, MD, Philadelphia, PA. Available at: www.mypacs.net/repos/mpv3_repo/viz/full/108,110/5,405,541.jpg.)

Fig. 7. Flexion teardrop flexion. (Courtesy of Amilcare Gentili, MD, La Jolla, CA at www.gentili.net. Available at: www.gentili.net/image.asp?ID=40&imgid=flexteardrop.jpg&Fx=Flexion+Tear+Drop+Fracture.)
Less devastating flexion injuries of the cervical spine include wedge fractures, anterior subluxations, and clay shoveler fractures (an avulsion fracture of the spinous process of C7) (Fig. 9). These injuries are usually stable, without neurologic deficit. An anterior subluxation must be evaluated very carefully to rule out disruption of posterior ligaments.

Extension Mechanism

Hangman’s fracture is a fracture of the pedicles of the axis or second cervical vertebra (Fig. 10). The usual mechanism of injury is extreme hyperextension during a diving accident or motor vehicle collision. This fracture is considered unstable because of its location, but spinal cord injury is not common because the spinal canal is widest at C2. The pedicle fracture allows decompression of the canal, preventing pressure on the spinal cord.11

The extension teardrop fracture is a potentially unstable injury caused by neck extension. The most common location is C2 (Fig. 11). This fracture is radiographically similar to the flexion teardrop fracture; however, the pathophysiology and mechanism of injury are different. In forced hyperextension, tension on the anterior longitudinal ligament causes avulsion of the anterior inferior aspect of the vertebral body. Neurologic injury is usually not severe, but it is extremely important to prevent neck extension and thus avoid injury to the anterior ligament.12 When the extensor teardrop...
occurs at lower levels, typically C5 to C7, central cord syndrome may be caused by buckling of the ligamentum flavum into the cord.16

Vertebral Artery Injury
Vertebral artery occlusion complicates 17% of cervical spine fractures.17 The cause of occlusion is usually vasospasm or dissection. Most unilateral injuries are not
symptomatic because collateral blood is supplied through the Circle of Willis. When present, typical clinical findings are vertigo, unilateral facial paresthesia, cerebellar signs, lateral medullary signs, and visual field defects. The clinical significance of dissection is the predisposition to thrombus formation, leading to basilar stroke. Cothren and colleagues note a consistent 20% stroke rate in untreated patients. Cervical spine injuries at high risk for vertebral artery injury are fractures associated with subluxation, transverse process fractures extending into the foramen transversarium, and fractures of C1 to C3. Patients with these injuries should be screened for vertebral artery injury. The gold standard test has been 4-vessel cerebrovascular angiography. The increasing availability of multislice CT scans has improved the accuracy of CT angiography for identification of vertebral artery injury.

SPINAL CORD INJURY WITHOUT RADIOGRAPHIC ABNORMALITY

Most often a spinal cord injury is associated with radiographic findings such as fractures, ligamentous injuries, or subluxations. However, a spinal cord injury can occur when bony abnormalities are not present. Spinal cord injury without radiographic abnormality (SCIWORA) is defined as the presence of a spinal cord injury on magnetic resonance imaging (MRI) in the absence of a fracture or subluxation on CT or plain radiography. Most studies limit SCIWORA to injuries of the spinal cord, not just a neurologic deficit that can also represent a peripheral nerve injury or a brachial plexus injury. Once thought to be a finding primarily in children, SCIWORA has now been found to occur more often in adults. A retrospective review of the NEXUS data found that 3.3% of adult patients had SCIWORA, similar to the 4.2% prevalence documented in another more recent retrospective study.

SPINAL AND NEUROGENIC SHOCK

Spinal shock is the phenomenon of loss of reflexes and sensorimotor function below the level of a spinal cord injury. It manifests as flaccid paralysis, including the loss of bowel and bladder reflexes and tone. Spinal shock is a temporary physiologic response to trauma that lasts from hours to days. The degree of recovery depends...
on the extent of the initial insult. Even with severe injury, patients will recover spinal cord reflex arcs such as the bulbocavernosus and anal wink.24

Neurogenic shock refers to hemodynamic instability that occurs in high spinal cord injury, including cervical cord and T1-T4. The 3 major manifestations are hypotension, bradycardia, and hypothermia. Hypotension is the result of sympathetic denervation that causes loss of arteriolar tone and results in venous pooling. Bradycardia occurs with interruption of cardiac sympathetics, allowing unopposed vagal stimulation. A neurogenic source of shock is suggested by the combination of hypotension and bradycardia or variable heart rate response.25,26 Loss of autonomic regulation occurs in high spinal injuries, contributing to hemodynamic instability and altered thermoregulation, typically manifesting as hypothermia.27

PREHOSPITAL MANAGEMENT

Emergency medical services systems (EMS) have one basic principle: deliver fast and efficient patient care for prompt transfer to a hospital. When managing cervical spine injuries, on-scene EMS personnel must rapidly triage patients and attend to the most critical injuries. When performing the initial evaluation, the ABCDEs (airway, breathing, circulation, disability, and exposure) should be monitored first. The airway must be secured before proceeding with the initial evaluation. If the airway needs immediate attention, manual in-line stabilization should be maintained at all times. The first responder must always assume that an injured patient has a spinal cord injury until proven otherwise. The initial insult causes the most damage to the cervical spine, and caution must be taken to prevent further injury. Good immobilization techniques prevent secondary injury and prevent the initial insult from progressing.

EMS personnel follow protocols when approaching a patient with a potential cervical spine injury. The first step is to survey the scene and ensure that it is safe to approach the patient. After securing the ABCs, the EMS provider can move on to the secondary survey, assessing the extent of injuries. For any trauma patient, EMS providers follow standard immobilization procedures. The physician who receives the patient in an emergency department will see various types of immobilization. The most common are the backboard, the rigid cervical collar, spider straps, and head blocks. The most important point is to secure the patient to the backboard to minimize movement in case the patient vomits and needs to be rolled onto the side to prevent aspiration. Another immobilization device is the Kendrick Extrication Device (KED),28 which is often used to immobilize and extricate patients from vehicles.

The protocol for spinal immobilization is as follows:

1. Maintain the head in neutral in-line position with a cervical collar in place
2. Logroll the patient onto the backboard
3. Secure the torso with spider straps or buckle straps
4. Secure the head to the backboard with foam blocks or towel rolls
5. Secure the legs to the backboard.

The backboard has claimed itself as the gold standard for spine immobilization in the prehospital setting. The backboard helps maintain neutral position of the spinal column en route and helps facilitate easy transfer once at the hospital. Occipital padding achieves the most neutral position; without it 98% of the patients would be in relative extension.29 Studies are unclear regarding how long the patient should remain on the backboard before he or she is at risk for developing complications, such as increased discomfort or pressure ulcers. Current recommendations suggest
timely removal from the backboard as soon as the primary survey is complete and the patient is stable, to avoid such complications.30

EMERGENCY DEPARTMENT EVALUATION

Clinical Assessment

A missed cervical spine injury can have devastating consequences. When approaching the trauma patient to evaluate the cervical spine, the emergency physician should first consider whether the spine can be cleared without the use of imaging. It is best to approach the cervical spine evaluation in a structured manner. An unstructured approach to examining the cervical spine has low sensitivity compared with a more systematic approach.31 One can apply structured clinical decision rules in alert stable patients without neurologic deficits to determine how to proceed with the workup to evaluate for a clinically significant cervical spine injury. A clinically important cervical spine injury is defined as any fracture, dislocation, or ligamentous instability demonstrated on diagnostic imaging. A clinically unimportant injury is defined as an isolated avulsion fracture of an osteophyte, an isolated fracture of a transverse process not involving a facet joint, an isolated fracture of a spinous process not involving the lamina, or a simple compression fracture involving less than 25% of the vertebral body height.

Airway Management

Patients presenting to the emergency department may require emergency airway management before a full assessment for cervical spine injuries can be performed. When approaching the trauma patient, the physician should assume that an injury to the cervical spine is present. If the patient has an associated head injury, with a GCS score of less than 9, the risk of cervical spine injury increases significantly. This patient is also the one who most likely needs an emergent airway. Lesions above C3 cause immediate need for airway management because of respiratory paralysis. Lower lesions may cause phrenic nerve paralysis or increasing respiratory distress from ascending edema. Injuries to the cervical spine may cause local swelling, edema, or hematoma formation that may obstruct the airway, necessitating intubation.

Recommendations for managing the airway of a trauma patient are32:

1. Rapid-sequence intubation (RSI): When managing an unconscious patient, standard drugs should be used for paralysis and induction
2. Manual in-line stabilization: An assistant firmly holds both sides of the patient’s head, with the neck in the midline and the head on a firm surface throughout the procedure, to reduce cervical spine movement and minimize potential injury to the spinal cord
3. Orotracheal intubation is preferred in trauma patients requiring intubation
4. Use a tracheal tube introducer such as a Bougie or stylet
5. Have a selection of blades ready: evidence supports the use of a Macintosh blade
6. A laryngeal mask airway (LMA) can be used as a temporary device.

Manual in-line immobilization (MLI), as described by Crosby,33 is designed to hold sufficient forces on either side of the head to prevent movement during interventions such as airway management. There are 2 approaches to MLI: (1) an assistant standing at the head of the bed grasps the patient’s mastoid process with the fingertips and then cradles the occiput in the palms of the hands; or (2) an assistant standing at the side of the bed cradles the mastoids and grasps the occiput with the fingers. Once the head and neck are stabilized by one of these methods, the front of the
cervical collar can be removed to increase mouth opening and visualization by direct laryngoscopy. The neck should be maintained in neutral position throughout the procedure, and the anterior aspect of the collar should be replaced promptly when it has been completed.

Ideally, MILI should prevent all movement that may worsen a spinal cord injury. In practice, this goal is not necessarily achieved. Crosby33 found that MILI minimizes distraction and angulation at the level of injury but has no effect on subluxation at the injury site. MILI may improve laryngoscopic views compared with immobilization with a collar, sandbags, or tape. In Crosby’s series, only poor views (grade 3 or 4), caused by limited mouth opening, were obtained in 64% of patients immobilized with techniques other than MILI and in 22% of the MILI group.33 In a retrospective study, Patterson34 evaluated neurologic outcome in patients with cervical spine injury who required emergent intubation in the emergency department. No patients in whom cervical spine injury was subsequently identified had a worsening of neurologic outcome related to immobilization. This study did not consider the specific technique used to immobilize the cervical spine, but did assume that a cervical spine injury was present in all patients presenting with trauma.

Cord-Level Findings

Neurologic deficits correlate with the level of the injury, resulting in weakness or paralysis below the lesion. There are 8 pairs of spinal nerves in the cervical spine. The dermatomal distribution for the cord at each vertebra is listed in Fig. 12. From C1 to C7, the nerve root exits above the level of the vertebra; from C8 and below, the nerve root exits below the level of the vertebra.

Fig. 12. Dermatome map. (From Agur AMR, Lee MJ, Anderson JE. Dermatomes. In: Grant’s atlas of anatomy. 9th edition. Philadelphia: Lippincott Williams & Wilkins; 1991. p. 252.)
The presentation of incomplete cord injuries depends on the level and location of the lesion. The anterior column conveys motor function, pain, and temperature, and the posterior column conveys impulses related to fine touch, vibration, and proprioception. Syndromes resulting from partial injuries are described here.

Partial Cord Syndromes

Anterior cord syndrome results from compression of the anterior spinal artery, direct compression of the anterior cord, or compression induced by fragments from burst fractures. Anterior cord syndrome manifests as complete motor paralysis, with loss of pain and temperature perception distal to the lesion. Posterior cord syndrome is very rare; involvement of the posterior column is most often seen in Brown-Séquard syndrome.

Brown-Séquard syndrome is characterized by paralysis, loss of vibration sensation, and proprioception ipsilaterally, with contralateral loss of pain and temperature sensation. These signs and symptoms result from hemisection of the spinal cord, most often from penetrating trauma or compression from a lateral fracture.

Central cord syndrome, induced by damage to the corticospinal tract, is characterized by weakness in the upper extremities, more so than in the lower extremities. The weakness is more pronounced in the distal portion of the extremities. This injury is usually caused by hyperextension in a person with an underlying condition such as stenosis or spondylosis.

CERVICAL SPINE IMAGING

Two decision rules guide the use of cervical spine radiography in patients with trauma: the NEXUS Low Risk Criteria (NLC) and the Canadian C-Spine Rule (CCR). The NLC were derived from the National Emergency X-radiography Use Study (NEXUS), which was designed to identify patients who do not need diagnostic imaging to exclude a clinically significant cervical spine injury. Cervical spine radiographs are indicated for trauma patients unless they have all of the following 5 characteristics: they are alert, are not intoxicated, have no posterior midline tenderness, have no neurologic indications of the injury, and have no distracting injuries (eg, a long bone fracture, a large laceration, a crush injury, a large burn, or another injury that produces acute functional impairment). The definitions of “intoxicated” and “distracting injury” are open to interpretation, requiring physician judgment in deciding whether to obtain imaging studies.

The CCR was developed out of concern for the potentially low specificity and sensitivity of the NLC for detecting clinically significant cervical spine injuries. The CCR poses 3 questions:

1. Does the patient have any high-risk factors? Patients are at higher risk if they are older than 65 years, if their mechanism of injury was “dangerous,” or if they experienced paresthesia in the extremities after the injury. Examples of dangerous mechanisms of injury include fall from a height greater than 3 ft, axial load to the head, high-speed motor vehicle crash, rollover, ejection, and bicycle crash.
2. Are any low-risk factors present that would allow a safe assessment of range of motion? Low-risk criteria include simple rear-end motor vehicle crash, the ability to sit upright in the emergency department, ambulation at any point after the incident, delayed onset of neck pain, and the absence of midline cervical spine tenderness.
3. Is the patient able to actively rotate the neck 45° to the left and right? If the patient has active rotation of the neck as well as low-risk factors and the absence of
high-risk factors, then the physician can safely clear the spine without radiographic imaging.35

A prospective cohort study done in Canada found the CCR to be more sensitive (99.4\% vs 90.7\%) and specific (45.1\% vs 36.8\%) than the NLC for detecting injury. In addition, the CCR resulted in decreased radiography rates (55.9\% vs 66.6\%).36

Imaging Modalities

Three methods exist for imaging the cervical spine in the emergency department: plain radiographs, CT, and MRI. Each has advantages and disadvantages, and the clinical situation must be considered when deciding which method to use.

Plain radiography typically includes 3 views: anteroposterior, lateral, and odontoid. This imaging modality is falling out of favor because its false-negative rate is higher than that associated with CT. Emergency departments commonly rely on CT imaging to evaluate patients for injury. CT allows easy imaging of the cervical spine when clinically indicated. A CT scan is best for detecting bony abnormalities; it can detect 97\% of osseous fractures. When ligamentous injury or spinal cord injury is suspected, MRI is indicated. Holmes and colleagues37 reported that CT detected no spinal cord injuries and only 25\% of ligamentous injuries in trauma patients. In the same series, MRI allowed discovery of all spinal cord and ligamentous injuries.

EMERGENCY DEPARTMENT MANAGEMENT

The treatment of cervical spine injuries begins after the initial clinical evaluation. After management of the airway, attention to hemodynamic support and blood pressure management is essential. Hypotension should not be attributed to neurogenic shock until blood loss or other trauma-related causes have been managed or ruled out. Regardless of etiology, it is critically important to aggressively manage hypotension in patients with cervical cord injuries. Hypotension is associated with worse outcomes and is thought to contribute to secondary injury because of reduced spinal cord perfusion.38

The goal for optimal spinal cord perfusion is maintenance of a mean arterial pressure of 85 to 90 mm Hg. Unstable patients require arterial lines and central venous or Swan Ganz monitoring. Initial treatment is with crystalloid. If indicated, blood transfusion should be started to correct blood loss. After volume correction, if the mean arterial pressure remains low, pressors should be initiated. A vasopressor should be chosen with the goal of treating both hypotension and bradycardia. Agents with \(\alpha\)- and \(\beta\)-agonist properties, such as dopamine, norepinephrine, or epinephrine, are preferred to provide both inotropic and chronotropic support. Caution is warranted when considering the use of phenylephrine its pure stimulation of \(\alpha\)-receptors is associated with reflex bradycardia. Bradycardia may require atropine or a pacemaker.27,38

In patients with a cervical spine injury and abnormal neurologic examination, the question of the efficacy and safety of methylprednisolone arises. Three multicenter, randomized, double-blind clinical trials have studied this question. Results of the National Acute Spinal Cord Injury Studies I, II, and III (NASCI I, II, and III) were published in 1984, 1990, and 1997.39–41 The first study compared outcomes in patients treated with a 100-mg bolus of methylprednisolone and then 100 mg daily for 10 days with those of patients treated with a 1000-mg bolus and then 1000 mg per day for 10 days in 330 patients with acute spinal injury. The investigators reported no difference in neurologic recovery at 6 weeks and 6 months after injury. A control group was not used.
NASCI II used a much higher dose of methylprednisolone (a 30-mg/kg bolus followed by a 5.4-mg/kg/h infusion for 23 hours). This group was compared with patients with comparable injuries treated with a naloxone regimen or placebo. A total of 487 patients were enrolled and divided into 3 treatment arms. Patients in the methylprednisolone arm treated within 8 hours of injury had a statistically significant improvement in motor and sensory function at 6 months compared with those in the other 2 groups. The Guidelines for the Management of Acute Cervical Spine and Spinal Cord Injuries, published by the American Association of Neurological Surgeons (AANS), document methodological, scientific, and statistical flaws in the trial, citing numerous criticisms in follow-up publications.38

The NASCIS III trial compared the efficacy of methylprednisolone for 24 hours with that of a 48-hour regimen. The salient findings were that patients in all groups treated within 3 hours after injury did equally well. Among patients treated between 3 and 8 hours after injury, those receiving the 48-hour regimen were statistically significantly better at 6 weeks and 6 months than those treated for 24 hours. Unfortunately, patients treated for 48 hours also had higher rates of severe sepsis and severe pneumonia. Nevertheless, the investigators recommended 24 hours of treatment for those receiving methylprednisolone within 3 hours of injury and 48 hours of therapy for those for whom treatment started 3 to 8 hours after injury.41 In their published guidelines, however, the AANS concludes that the available evidence does not demonstrate significant clinical benefit of treatment of patients with acute spinal cord injury with methylprednisolone for either 24 or 48 hours. The report states, “In light of the failure of clinical trials to convincingly demonstrate a significant clinical benefit of administration of methylprednisolone, in conjunction with the increased risks of medical complications associated with its use, methylprednisolone in the treatment of acute humans spinal cord injury is recommended as an option that should only be undertaken with the knowledge that the evidence suggesting harmful side effects is more consistent than the suggestion of clinical benefit.”38 The investigators suggest that emergency physicians consider the individual factors unique to each clinical case when making the decision of whether to initiate treatment. Consultation with the accepting trauma service or neurosurgeon is appropriate and encouraged.

Surprisingly little evidence exists to guide emergency physicians when treating patients with cervical strain without associated fracture or neurologic deficit. Commonly used modalities include rest, ice, analgesics, and muscle relaxants. Acetaminophen and nonsteroidal anti-inflammatory medications are the cornerstones of analgesic therapy in the United States. Turturro and colleagues42 studied the efficacy of 800 mg ibuprofen with and without cyclobenzaprine administered to adults with acute myofascial strain. These investigators found significant pain relief at 48 hours but no incremental benefit to the use of cyclobenzaprine. Central nervous system side effects were more prevalent in the group receiving cyclobenzaprine. Cyclobenzaprine alone, however, has demonstrated efficacy in acute muscle spasm of the neck and back.43 One study showed no difference in pain relief between patients receiving 5 mg 3 times per day and 10 mg 3 times per day. Sedation was lower in the former group. A Cochrane Review found that administration of intravenous methylprednisolone within 8 hours of injury significantly reduced pain at 1 week and decreased days lost from work at 6 months.44 Other evidence suggests that gentle exercise and physical therapy are more efficacious than rest, soft collar, and gradual advancement of neck mobility.45 Based on the limited evidence to date, the authors recommend gentle range of motion exercises and treatment with an analgesic such as ibuprofen. In patients with contraindications to nonsteroidal anti-inflammatory medications or palpable spasm, a muscle relaxant such as cyclobenzaprine at 5 mg 3 times
per day may be substituted. All patients should follow up with a primary care physician who can arrange for physical therapy if necessary.

DISPOSITION

Early consultation with a spine or neurosurgeon is critical to optimal management of cervical spine injuries. Early intervention accomplishing closed reduction, halo traction, open reduction, or decompression of serious injuries with cord compromise provides the best patient outcomes. Critical care consultation and admission to the intensive care unit are indicated for unstable cervical spine fractures or spinal cord injury. Numerous studies document the benefits and improved neurologic outcomes of optimal hemodynamic and respiratory management. Severely injured patients frequently suffer from hypotension, cardiac instability, hypoxemia, and pulmonary dysfunction for 7 to 14 days. Placement of a hard cervical collar provides protection from a secondary injury. Those with minor muscular and ligamentous strain may be treated symptomatically with analgesics or muscle relaxants and gentle range of motion exercises.

SUMMARY

Cervical spine trauma is high risk and anxiety provoking for patients and emergency physicians. A detailed understanding of the clinical approach to the patient in the field and the emergency department is essential to limit morbidity. This article has reviewed the clinical and radiographic evaluation, relevant anatomy, common fractures, and management principles. Careful study and implementation of these concepts provides the emergency physician with the necessary knowledge to safely and expertly care for this important group of injured patients.

ACKNOWLEDGMENTS

The authors thank Linda Kesselring, ELS for technical assistance in the preparation of the manuscript.

REFERENCES